Physics 137B Section 1: Problem Set #6 Due: 5PM Friday March 12 in the appropriate dropbox inside 251 LeConte (the "reading room")

Suggested Reading for this Week:

- Bransden and Joachain (B& J) Sections 9.5, 10.4-10.6
- A table of electron configurations can be found on page 192 of Griffiths. You can also find the electron configurations on the web, for example at http://chemistry.about.com/library/weekly/aa01310

Homework Problems:

- 1. B& J Problem 9.11
- 2. Consider two identical particles in a 1-dimensional harmonic oscillator potential, one in state $|n\rangle$ and the other in state $|m\rangle$. Suppose the particles interact via a potential $V(x_1, x_2) = \lambda(x_1 x_2)^2$, where λ is a small number. For the two cases
 - (a) The particles have spin 0
 - (b) The particles have spin $\frac{1}{2}$

write down the wave functions arbitrary values of n and m and then, to first order in perturbation theory, find the value(s) of energy for the ground state and first excited state.

- 3. Show that the ground states for the first three elements in the "neon configuration" (Z = 11 to 18) are consistent with Hund's rules:
 - 1 The lowest energy state is the LS multiplet with largest value of s
 - 2 When more than one value of ℓ is associated with the maximum s value, the lowest energy state among those satisfying the exclusion principle is the one with the largest ℓ .

3 For a given ℓ subshell containing n electrons, the lowest energy level has J = |L - S| if the subshell is no more than half filled and has J = |L + S| if it is more than half full

Note: Different texts list Hund's rules in different order. This is the order quoted in Liboff. Griffiths switches the order of rules 2 and 3.

- 4. For this problem, we will concentrate on the following 3 atoms: Boron (Z=5), Carbon (Z=6) and Nitrogen (Z=7).
 - (a) Find the electron configuration for each element
 - (b) Find the corresponding total angular momentum. List all possibilities if more than one angular momentum is allowed and express your results in Russel-Saunders notation $(^{2S+1}\mathcal{L}_J)$
 - (c) Use Hund's rules to resolve the ambiguities in (b)